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An asymptotic description is given of Newtonian fluid flow in a channel which is 
suddenly heated or cooled. The viscosity is assumed to be purely a function of tem- 
perature. The asymptotic approximation is that the downstream viscosity a t  the 
channel wall differs by an order of magnitude from that in the upstream flow. Although 
we make the drastic assumption that viscous dissipation is negligible, we can analyse 
flows where the viscosity depends either algebraically or exponentially on the 
temperature. 

1. Introduction 
The aim of this paper is to provide a qualitative theoretical description of the effect 

of a sudden increase or decrease in the wall temperature on the flow of a Newtonian 
fluid in a narrow channel. Such a description is possible when the viscosity is either 
weakly or strongly dependent on temperature, and we shall analyse the latter situation 
here. Our motivation comes from the study of rheometers and injection-moulding 
devices, the realistic modelling of which usually requires a numerical solution. Our 
principal hope is that these results can be used as a check on computer models for 
real flows when viscosity variations are large enough to pose numerical difficulties 
and in particular we shall try to describe clearly the mechanical and thermal boundary 
layers which can then arise. In practice our solutions describe only high Prandtl 
number flows, say of oils, when in addition both the imposed temperature difference 
is large enough for the Brinkman number to be small, and smaller than the Nahme- 
Griffith number, and the channel width is small enough for the PBclet number to be 
large. The fact that the Prandtl number is large also ensures that the mechanical 
relaxation length along the channel is much less than the thermal relaxation length 
and we therefore assume a fully developed Poiseuille flow, with uniform temperature 
TI, dynamic viscosity ,u1 and maximum speed +U at the point x = 0 at which the wall 
temperature is changed. We also assume that the fluid has constant density p, constant 
specific heat c and, for mathematical convenience, constant thermal conductivity k .  
For most of this paper we shall discuss two-dimensional flow. The very similar analysis 
for the axisymmetric case will be described briefly in the appendix. 

To be more precise, in two-dimensional flow we non-dimensionalize by writing the 
transverse co-ordinate as hy, where y is half the channel breadth; the downstream 
co-ordinate as Lx, where L = pch=U/k is the length over which downstream convection 
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balances transverse conduction; the velocity as (Uu, hUv/L); the pressure aspl UL/h2; 
the viscosity p(T)  as p ,  p ( T )  ; and the temperature difference p--  TI as (AT) T, where 
AT is the imposed temperature difference. The Navier-Stokes equations become 

o(--) h2 k =-p,+o(;) ,  

uTx+vT, = T,,+OG,’&), 

L2PU,C 

with boundary conditions 

v = T = O ,  u = & ( l - y z )  at x = O  (1.5) 

and T T l = u = v = O  at J y I = 1  (1.6a, b )  

in the heated and cooled cases respectively. 
The assumption of large Prandtl number ,ulc/k allows us to neglect the inertia 

terms in (1.2) and (1.3); that of large PBclet number L/h allows us to make the lubri- 
cation approximation; and that of small Brinkman number pl U2/kAT allows us to 
neglect viscous dissipation in (1.4).  Pearson (1977) discusses flows with rapidly 
varying viscosity where dissipation is entirely responsible for the temperature 
variations. 

Introducing a stream function $, our dimensionless model becomes (with a prime 
denoting d ldx )  

P x  = P ‘ ( X ) ,  P W w , ,  = YP’, (1.7a, b )  

$2, - $2 T, = TYV, (1.8) 

with T = O ,  $ = - $ y 3 + + y  at x = O  (1.9) 

and T 7 1 = $x = $, = 0 at I y 1 = 1,  (1.10) 

where -p’(O) = ~ ( 0 )  = 1. The dimensionless parameter j3 is the ratio of the Nahme- 
Griffith number U2 k-ld,Z/dp t o  the Brinkman number and measures the sensitivity 
of the viscosity to changes in temperature. Our asymptotic approximation will be 
that j3 9 1 and ,a( -j3) 9 1 9 p(/3). We shall find that this approximation predicts 
flows in which there are rapid changes in both the scaled x and the scaled y direction. 
If, in a real situation, the rapidity of these changes invalidates our original choice of 
length scales, we hope our solution will still be of value as a limiting one against which 
to compare the numerous numerical solutions of (1.7)-( 1.9) and their generalizations 
(see, for example, Hieber 1977, private communication; Horve 1974; Lord & Williams 
1975). 

In both the heated- and the cooled-wall problems, mass conservation ensures that 
the velocity returns to its original Poiseuille profile sufficiently far downstream, at a 
greatly reduced or increased pressure gradient respectively. There is no non-uniqueness 
about this steady state as there could be were dissipation important. However, this 
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does not guarantee the stability of the flows we are about to describe. Indeed the jet- 
like flows which occur when the wall is cooled do suggest instability, but we shall 
consider only the steady-state problem here (see Lebon & Nguyen (1974) and Craik 
(1968) for a discussion of the stability of the fully developed flow). 

Before we consider the detailed solution of (1.7)-(  1.10) in various cases, we note 
that a boundary-layer analyiis of these equations is always possible when x is suffi- 
ciently small for the pressure gradient to be still near - 1, the velocity field away from 
the walls being close to (1.9). The temperature then differs appreciably from zero only 
in thermal boundary layers which, since (1.9) gives 

$ N -Q+&y+ 1)2 as y+--1 ,  (1 .11)  

$ + Q = xt f ( g ) ,  T = g(5), where 5 = (y + l)/x*, (1.12) 

are of thickness O(x4). The boundary layers even admit a similarity solution of the 
form 

and I . (Pg)  d2f/d52 = 1 I d29ldC2 + 3.f dgfd5 = 0, (1.13a, b)  

with g 7 l  = f = d f / d < = O  at ( ; = O .  ( 1.14 a, b) 

For values of p 6 O(l),  these boundary layers grow and merge when x reaches 
O( l) ,  the flow finally reverting to isothermal Poiseuille flow as x + co. For small p, an 
explicit description of the process can be given as a perturbation about the solution 
to the Graetz problem, ,8 = 0 (Galili, Takserman-Krozer & Rigbi 1975). In  fact, when 
/3 = 0 there is an eigenfunction expansion for the solution of (1.8) for any x but even 
then the explicit ‘Leveque’ solution of (1 .13)  and (1.14) is still helpful for x < 1 
(Munahata 1975). 

The next two sections of this paper will discuss the solution of (1.7)-( 1.10) for large 
p in  the cases of heated and cooled walls respectively. In  both cases the entry solution 
( 1.13) will still apply for sufficiently small x, depending now on p. The original moti- 
vation for some of the scalings came from the consideration of the simplified problem 
in which ,u is a suitably centred and scaled step function of T .  The flow then becomes 
a free-boundary problem consisting of two regions of constant viscosity and in situ- 
ations for which there is a similarity solution this enabled us to solve the equations 
explicitly. This approach was particularly helpful for the cooled-wall problem, when 
it showed that the viscosity change occurred at  an O( 1)  distance from the wall, which 
suggested a solution for more general with a free-layer structure as described in 
53.1.2. 

2. Heated channel wall 
2.1. Algebraic viscosity 

We first consider the case where ,u decreases algebraically as BT increases such that 
,u(pT)/,u(.(p) = O( 1) as p-+ 00 for T = O( 1). The case of exponential decrease is roughly 
similar and will be considered later. 

2.1.1. Entry region. We begin by describing the solution of (1.13) for small values 
of p(p)  = ,uo, say. We note that O(1) variations in g can occur only when both 
f/C2 = O( l/,u,,) and f = O( l/<), so we redefine 

g = CLQCI, f = rUO!fI (2.1) 
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rb 0.5 1 2 5 10 
a 1-75 1.20 0.799 0.445 0.277 

TABLE 1.  Values of the asymptotic constant a for different viscosities. 

to give 

(2.2a, b )  

Now this sublayer can have a chance of matching with the core Poiseuille flow only if 

g + O  as C l + a  (2.3) 

to lowest order in ,uo. Moreover, in the case when ,u(Pg) = 1/(1 +Pq)*, so that ( 2 . 2 ~ )  
is g-*d2f,/dCf = 1 to lowest order, there are only a triply infinite number of solutions 
for g satisfying (2.3). We thus assume in general that (2.3) renders the solution of 
(2.2) with boundary conditions ( 1 . 1 4 ~ )  unique. Indeed, numerical integration from 
cl = 0 to 5, = 5 confirms the existence, for any n, of a positive constant a such that 
f N a[, and g = O(Cc1exp (-+a<:)) as C1+w and typical values of a are given in 
table 1.  

+ co, the stream 
function does not. The sublayer must be complemented by an outer region in which 
C = O(,ui*), f = O(,u$) and g is exponentially small, and where 

However, while the temperature g then matches with the core as 

f ,uo+~~(,uQC)2+a(,u8<)> (2.4) 
to lowest order. 

If we now ask how far downstream this thermal boundary layer extends, we can 
note either that (2.4) indicates a perturbation to the 0 ( 1 )  core stream function which 
is O(xa/,u%) or that the region in which f adjusts to its core value is at a distance 
O ( x ~ / , u ~ )  from the wall. Either observation suggests that the core velocity ceases to 
satisfy the no-slip condition when x reaches O(,ug). Then the core stream function 
$ N - 3 + Q( 1 +p' )  (y+ 1 )  as y-t - 1, and p' is no longer near - 1. 

2.1.2. Xlipping core region. We are led to consider a new thermal boundary layer 
in which x = O(,ug), y+  1 = O(,uo), $r+ Q = O(,uo), p' = O(1) and in which 

to lowest order. To avoid proliferation of suffixes here and henceforth we have written 
capitals for $ and y when they are used as boundary-layer variables (0.g. in (2.5), 
y + 1 = po Y ,  $r + + = ,uoY). The usual wall boundary condition ( 1.10 a )  is applied and 
matching with the slipping core requires that 

T = o( l ) ,  Y N + ( l + p ' ) Y  as Y- tw.  (2.7) 

Despite the variation of p ' ,  (2.5)-(2.7) still admit a similarity solution 
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FIGURE 1. Variation in pressure gradient in slipping core region. 

Here h is an as yet arbitrary constant, fl and g satisfy (2.2) and (1.14a) with cl 
replaced by c, and 

The matching condition (2.7) requires that fl N (3)-*6/3A as (+m, and so, from the 
solution of (2.2) described earlier, 

= (#)*/3a, (2.10) 

where a is given in table 1. Integration of (2.9) yields the explicit formula 

1 1  x 3  -+++logIp'I +p' = --- 
2P'2 P A3 2 

(2.11) 

since p'+ - 1 as x+ 0 from this region. As shown in figure 1, the pressure gradient 
decreases to zero as x -+ co, with a corresponding change in the core velocity from the 
inlet Poiseuille flow to plug flow. 

The thermal boundary layers for x < O(&) are summarized in figure 2 to emphasize 
that the double layer structure is only needed for x < pi.  

2.1.3. Fully developed region. It is now straightforward to see that sincep' = O(z-4) 
as x +co in (2.1 l), and since the pressure gradient in the fully developed flow is -po, 
the renaissance of Poiseuille flow is described by writing p' = po P' in our original 
equation (1 .7)  and leaving all the other variables unaltered. This effectively leaves US 

with the full equations to solve, subject to the matching condition of plug flow as x -+ 0. 
Although this problem is intractable analytically, it is plausible that there is a solution 
in which P' is O(x-4) and T and $ + f y  are exponentially small as x+O with 
( y +  1)2 % x. 
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FIGURE 2. Temperature (dashed curves) and axial velocity (solid curves) variations 
in boundary layers in entry and slipping core regions. 

2.2. Exponential viscosity 
For simplicity we just consider p = e-BT, although our arguments should apply 
whenever ,@T) >> po unless T - 1 = O( 1//3). 

The solution of (1.13) can no longer be analysed with the scaling (2.1) and a further 
subdivision becomes necessary. There is a region near the wall, denoted by a suffix 1, 
in which g = 1 - gl/Pand in which f IS2 = O( l/,uo), so that ( 1.13 a )  is d”fi/dcf = exp ( - gl). 
Assuming [f < 1 ,  i.e. that C3 < ,uo in this region, we also have d2gIdc: = 0 to lowest 
order. Hence 

91 ACl, (2.12) 

(2.13) 

for some constant A .  There then follows a region, denoted by a suffix 2, in which 
g varies by O( 1) and in which we write J2 = /3-lc1, g2 = /3-1g1 and f2 = P-’ fl. Assuming 

f[ = O(1) in region 2 (2.14) 

gives d2f,/d[,2 = Pexp ( -/3g2), i.e. f2 = C2/A to lowest order. This in turn implies 

(2.15) 

and any other equation for g2 would lead to a contradiction. Now (2.14) means that 
f 5 = 0(/3-2) in region 1 and hence that, in region 1 ,  6 is given by 

5 = OCPt/P% (2.16) 

The region in which C; = O(p$) in the algebraic case has split into two regions, one 
slightly thinner, in which there is an O(P-1) temperature change, and one slightly 
thicker, in which the temperature changes by O(1). We also note that (2.15) can have 
a solution matching with (2.12) and with g2+ 1 as <2-+oo only if A = (4137~)). 
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Finally we require an outer velocity adjustment layer as in (2.4) but where now 

(POP)-* “POP)# G2 + (m“(PoP)*  511. (2.17) 

In  summary, the exponential-viscosity inlet flow only differs from the algebraic 
case in that the temperature needs slightly more space to adjust to its core value, 
and this is a feature which will pereist throughout the development of the flow. 

From (2.17), the slipping core region now occurs when x = O ( p t P Z )  and scaling 
y + 1 and $ + 4~ by O(P,u0) simply replaces (2.5) by 

5 = O(,uo/3-%, f = O(,uoP)-% and the leading term in the expansion for f is 

e-P1’Yyy = -Pp0p’.  (2.18) 

For large P, (2.18), (2.6) and (2.7) are also analysed by splitting the region into one in 
which Y is O(P-l) and T varies linearly with Y ,  differing from 1 by O(l/P) ,  followed 
by a region where Y and T change by O(1).  The similarity solution (2.8) still applies, 
leading to (2.9) and (2.10) with a replaced by (#m) i .  

There is a more dramatic contrast with the algebraic case when we consider the 
renaissance of the Poiseuille flow. The thermal boundary layer associated with the 
slipping core suggests that, when x has reached 0 ( 1 ) ,  the outer of the split regions, 
in which T varies by O(1) but the shear is exponentially small, will have moved a 
distance O(1) from the wall. Moreover the pressure gradient will have dropped only 
to O(/3,uo) rather than its fully developed value po.  We thus seek a solution for 
x = O(1) in which $ remains near f y  except in velocity boundary layers near the 
walls, and in which T adjusts to within O(P-1) of 1 everywhere. Now the solution of 

with 

fTx = T,, 

0 when x = O ,  y +  + 1 ,  

1 when y = + l ,  x + O  
T = (  

(2.19) 

(2.20a) 

(2.20 b)  

gives T N 1 - (4/n) exp ( - &r2x) cos ($my) (2.21) 

as x -+ CQ. Furthermore, the velocity boundary layer in which $+a, T - 1 and y + 1 
are O( l/P) is described by 

T y y  = 0, e-fi(T-l)Yyy = -p’/poP. (2.22) 

Hence (2.23) 

where matching with the core yields 

- P’/(P,uoB(X)) = a, B ( x )  = 2exP( - %n2x). (2.24 a ,  b)  

Thus, by the time x has reached (4/3n2)log,8, p’ will have fallen to O(po) and T- 1 
will be O(l /P)  everywhere. The flow will thus be able to readjust finally to its fully 
developed Poiseuille profile over values of x within O(1) of (4/3m2)logP, and this 
adjustment will again be described by effectively the full equations together with the 
condition that T matches with (2.21) and $ + f y  as x+ -a. 
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3. Cooled channel wall 
3.1. Exponential vi8cosity, /.I = e-pT 

In  the solution of (1.7)-( 1.9) and (1. lob), there is still a qualitative similarity between 
the cases of algebraically and exponentially varying viscosity, but now the latter is 
slightly easier to analyse. Again we begin with the solution of (1.13). 

3.1.1. Entry region. We first note that, for Jgl < O( l/p), f will be exponentially small, 
so that, sufficiently near the wall, g - - 1 +cc  for some constant c depending on p. 
Now, from ( l . l3b) ,  f will in general only change by O(1) when g changes by O(1). 
These two observations suggest that c = co/p and hence the scaling 5 = /3[(1). For 
5'') < c01 the lowest-order solution is 

f = 0, g = - 1 + c o p ,  (3.1) 

but near c(1) = c;l there is a transition region where we put g(l) = c<l+  x/p and g = G/P. 
I n  these variables 

with matching conditions 

G - cox, f exponentially small as x 4 - 00. (3 .3a)  

We also hope to be able to match this region with the no-slip core: 

G - 0 ,  f ~ 4 x 2  as X++CO. (3.3b) 

Now the condition ( 3 . 3 ~ )  eliminates the doubly infinite number of possible solutions 
of (3.2) of the form f - constant x x+constant as x+ -00, while (3.3b) eliminates 
the singly infinite number of solutions in which g - constant as x-f +a. We thus 
conjecture that (3.2) and (3.3) determine a unique value of co and a unique solution 
for f and G apart from an unknown shift in x. Indeed, numerical integration between 
x = - 5 and x = + 5 suggests that co -N 0.986. 

Thus the thermal boundary layer at  the inlet consists of a relatively thick region 
over which the temperature almost adjusts to its free-stream value, but where the 
velocity is exponentially small, followed by a thin region of thickness O(x$ at a 
distance O(px4)  from the wall in which the velocity adjustment takes place. This 
suggests that when x = O(/F3)  we should look for a 'free layer' of width O(B-') near 
y = ~ ( x )  = O(1) such that the velocity remains exponentially small for - 1 < y < 7. 

3.1.2. Free layer. For x = 0(/3-3) the argument leading to (3.1) but now applied to 
the full equations (1.7) and (1.8) shows that $+Q is exponentially small and 
T = - 1 + ( y  + l ) / (q + 1) to lowest order when y < 7. Also, in 0 2 y > 7, away from 
the free layer, we expect T to be exponentially small, so that 

$ = $Ply3 + a ( x )  Y. (3.4) 

If we were to assume that the free layer could support a tangential velocity dis- 
continuity, we should not be able to match (3.4) with the entry region as x + O .  We 
therefore apply the condition 9 + Q = $y = 0 at y = 7 to (3.4) to give 

p'73 = 1. (3.5) 
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FIGURE 3. Variation in pressure gradient in free-layer region. 

We can even determine p' explicitly by considering the free-layer structure. We note 
that if we scale y - q and T with O( l/p) and $ + 3 with O( 1/p2), remembering that 
x = O ( l / P 3 ) ,  we obtain 

together with (2.6) to lowest order, with matching conditions 

e-T$*, = TP' ( 3 4  

T - Y/(q + 1))  $ exponentially small as Y -+ - 00, ( 3 . 7 a )  

T exponentially small, @ N ip 'q  Y 2  as Y -+ + co. (3 .7b )  

This system admits the similarity solution 

T = G ( x ) ,  Y = h(z)  f (x), where now x = Y/c,(q + 1 )  

and G and f satisfy ( 3 . 2 )  as long as 

h = ciq(1 + ~ ) ~ p ' ,  ah/& = 2/3~,(7 + 1). (3 .8 )  

Finally, integrating ( 3 . 5 )  and (3 .8 )  using p'+ - 1 as x+ 0 yields 

X / C ~  = log lp'1 + $p'g + 6p'& + 3 
(figure 3). 

We note that as x -+ + co in this region 

(3 .9 )  

p' - - ( $ X / C i ) *  (3.10) 

and that the free layers approach within O(p-l) of each other at  a distance x = O(Pz)  
on the free-layer scaling. By this time, p' has grown to only O(P3),  which is much 
less than its fully developed value e l .  The variations in the thermal boundary layers 
before they merge are shown in figure 4. 



186 H .  Ockendom and J .  R. Ockendon 

FIGURE 4. Negative temperature (dashed curves) and axial velocity (solid curves) variations in 
boundary layerc, in entry, free-layer and hobjet regions. 

3.1.3. Hotjet  region. The merging of the free layers is described by the full equations 
(1 .7)  and (1.8) (with /3 = 1);  these are obtained by scaling x, y and T in the merging 
region with P-l ,  and p t  with /33. In  the outer region 1 2 I yI > O(l/p),  

$+* = T - y  = 0 (3.11) 
to lowest order. 

The situation when x = O( 1)  is more interesting and moreover capable of explicit 
analysis. The merging region continues as a relatively hot jet, but one in which T 
varies axially by O(1). Between the jet and the wall we now have 

$ + g  = T-y-To(x)(y+l) = 0 (3.12) 

to lowest order, where To(0) = 0 to match with (3.11). However, in the jet we write 

T = To(x) + T*//3, p' = e~p(-/3T~(x)}/3~p*'(x) 

and scale y with 0(/3-l), leaving x and $ of order 1, to obtain 

exp( -T*)Y,, = Yp*', (dTo/dx)Yy = TgY. (3.13a,b) 

The boundary conditions are 

T $ = Y = O  on Y = O  ( 3 . 1 4 ~ )  

and, from matching with (3.11), 

y p N - l  5 ,  T*+( l+To)Y  as Y - + - o o .  (3.14b) 

Hence, from (3.13b) and (3.14b) 

and so, from (3.14a), 
(dTo/dx) (Y + +) = T$ - To - I ,  (3.15) 

QdTo/dx = -To- 1, i.e. To = e-3*- I. (3.16) 

We finally conjecture that this hot-jet region persists until T + 1 is 0(/3-l) throughout 
the flow, i.e. until x is near +log/3. If we anticipate that the asymptotic solution of 
(3.13) and (3.14) is such that p*' = O(e-9X),  the order of magnitude of the pressure 
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gradient will have increased to its fully developed value when x -  i logp  = O( l ) ,  and 
within such a region the full equations will have to be solved in the variables $ and 
P(T + 1 ) .  That this is indeed the correct additive scaling for x can be made more 
plausible by putting e-3x = z in (3.13) to give exp( -T*)T*yuu = -3Yzp*' with 
T$ = 0 on Y = 0 and T* - Yz as Y -+ - 00. Now this system is invariant under the 
scaling z .+ €2, Y -+ e-l Y just as long as p*' cc 23 = e-9x. This suggests that the region 
in which the temperature differs from T,,(x) by O(,!-1) is at  a distance O(1) from the 
centre of the channel when z = O( l/p). This corresponds to putting x - 6 logp = O( 1 )  
in our original hot-jet variables. 

The overall features of the merging and hot-jet regions are shown in figure 4. 

3.2 .  Algebraic viscosity 

We restrict attention to the case ,u = 1 -PT. The entry region is still susceptible to 
the scaling ( 2 . 1 ) ,  in which variables ( 2 . 2 ~ )  becomes 

- gdy l /d5 ;  = 1 (3.17) 

to lowest order. We conjecture that there is no solution of (3.17) and ( 2 . 2 b )  for which 
g -+ 0 as Cl -+ 00 but that instead there is a finite value of Cl, say fl,, in the neighbourhood 
of which g - Q(Cl- Q ) 3  and fl - - 3/(c1- Q). A linearization near such a point cl = Q 
shows that fi differs from -3/(cl-cC) by O ( ~ ~ l - ~ c ~ K ) ,  where 01 satisfies a quartic 
equation. This equation has two complex roots with real parts greater than 3 and 
two real loots less than - 1.  We thus expect that the three conditions (1 .14b)  at 
ll = 0 will determine cc uniquely. In fact, integrating (3 .17)  and (2 .2b )  numerically 
for different values of g' (0)  decreasing from + co towards 0.569 shows that g vanishes 
at  some value Y T  which increases towards 2-65. Moreover, g ' (5 : )  is positive but de- 
creases to zero as g'(O)$O-569. For g'(0) < 0.569, g < 0 for all g and g tends mono- 
tonically to a negative constant as cl-+m. We thus conjecture that 5, is near 2.65. 
The velocity will adjust to match with the core in a region in which Cl - 5, = p-*x, 
g = O(p-1) and fl = O(p*), where x = O(1). In  variables scaled this way, the region is 
described by the solution of ( 1  - g)d2f/dX2 = 1 and d2g/dX2 + Q f dg/dX = 0 with match- 
ing conditions g - &y3 and f - -32-1 as x-+ -co and g - 0 and f ,., +x2 as x-+ +m. 
Plausibility arguments similar to those following (3.2) and (3.3) can be given for the 
uniqueness of the solution of this system, whose numerical solution is given in figure 5 .  

The layer near Cl = Q again generates a free layer downstream. However it is now 
of thickness O(p-*) and exists over a region x = O(p-l) and, unlike the case of exponen- 
tial viscosity, T and p($++) satisfy effectively the full coupled equations in 
- 1 < y < 7. As in the entry region, the solution in - 1 < y < 7 appears to determine 
the position of the free layer, whereas, with exponential viscosity, the structure of the 
free layer determined its position. The core flow in 7 < y < 0 is still given by (3.4), so 
that (3 .5 )  remains valid, but we have found no analogue of (3.9).  

The lack of an explicit solution in - 1 < y < 7 makes it impossible to determine 
the similarity variable for the free-layer region and this makes the region in which 
the layers merge more elusive. One possibility is that merging takes place over x and 
y distances O@), with the temperature being O(p-l) and the pressure gradient 
O(p-4). Between this merging region and the wall, $ is still near - 6 but T is O(1). 
If this is the structure when x = O(p-4) there will presumably then be a final region 
with x = O( 1)  and p' = O(p)  within which T and 4 attain their fully developed values. 
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FIGURE 5. Numerical solution of 

4. Conclusion 
The asymptotic techniques described above permit a qualitative and in some cases 

a quantitative discussion of the important features of the flow fields for a variety of 
viscosity/temperature laws providing only that they are sufficiently sensitive. In 
particular, the regions where the velocity and temperature gradients are most severe 
can be read off a t  once, as well as the relevant orders of magnitude. 

As described briefly in the appendix, the methods can easily be applied to axi- 
symmetric flow. The two most obvious differences which we have noticed are that 
in the cooled-wall case (3.5) is replaced by p'@ = - 1 and that ,  when the viscosity is 
exponential, the thickness of free layer decreases downstream. This decrease is so 
rapid that, when the free layer nears the centre-line of the pipe, the temperature has 
fallen to within O( l/p) of - 1 everywhere and consequently there is no hot-jet region at  
all. 

We should like to express our thanks to Professor S. F. Bhen and Dr C. A. Hieber 
of Cornell University for drawing our attention to this problem and for their useful 
suggestions, to Dr A. B. Tayler for pointing out the basic similarity solution (1.7), and 
to Dr D. F. Mayers and Mr R. Branton for numerical assistance. 
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Appendix. Axisymmetric flow 
The dimensionless equations corresponding to (1.7)-(  1.10) are 

APT) (y-l $r)r = @P', (A 1)  

$rTx-$xT, = (rTrh-7 (A 2) 

T = 0, $ =  +rz -&f i  at x =  0 ( A  3) 

and T T l = $ r = $ x = O  a t  r = l .  (A4a,b)  

$='- 16 x'f (5))  = g ( 5 ) ,  5 = (l  -r)/x' 

where r is distance from the axis and the axial. velocity is r-lqr, with 

When x is sufficiently small for p' to be near - 1, we now write 

to obtain 

instead of (1.13). 
When the wall is heated, this boundary-layer structure breaks down in the case of 

algebraic viscosity, as in 5 2.1.2, when x = O(,ui). The subsequent slipping core region 
is described by the scalings which led to (2.5) and (2.6). Although (2.11) is still valid, 
the appearance of the 4 in ( A  1)  and the replacement of (2.7) by Y - +( 1 +p' )  Y means 
that. (2.10) becomes 

Again the full equations describe the flow downstream of the slipping core region. 
For an exponential viscosity, the only other slight contrast with the two-dimensional 
flow is that when:x = O( 1) the plug flow is $ = &r2, with the temperature consequently 
being governed by +rTx = (rTr)r. The relevant asymptotic solution as x -+ co is 

h = 64/8a. (A 6) 

where y1 is the smallest zero of Jo(r), and the final adjustment to fully developed flow 
takes place when x - (4yl)-l logP = O( 1) .  

There is more contrast with the two-dimensional case when the wall is cooled. For 
an exponential viscosity, a free-layer analysis for x = O(P-3) gives a core r < [(x) in 
which, to lowest order, 

T - 0, $ N (&#- i<2r2)p'. ( A  7) 

This core is separated by the free layer from a stagnant region in which 

@ - -l- 1 6 '  T - - 1 + log r/log 5. 
Hence, instead of (3.6), 

The similarity solution in the free layer is 

<4p1 = - 1 .  

T = P-lG(x), $ = +g - (2-%w2) (log5)2f(x), 



190 

We find 

H .  Ockendon and J .  R. Ockendon 

as long as 

which implies p' = - exp {4(2x)*/co}. (A 14) 

The distance of the free layer from the axis is comparable with its thickness when 
5 - efl, by which time p' has increased to the order of magnitude of its fully developed 
value and our unscaled x variable is O( 1) .  The free-layer region merges into a region 
described by the full equations, where T + 1 = O( 1//3), and there is no hot jet as in the 
two-dimensional case. Finally, when the viscosity is algebraic, there is a free layer of 
width O ( p 4 )  when x = O(/?-l) but still no similarity solution. 
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